
Team Number: Dec 1713

Client: Dr. Geiger

Team Members & Roles:

Ian Harris Team Leader Web App Developer
Gregory Steenhagen Webmaster Web App Developer
Tim Lindquist Key Idea Node Engineer
Steven Warren Communication Node Engineer
Terver Ubwa Home node Engineer
Khoi Cao Home node Engineer

Team Email: dec1713@iastate.edu

Team Website: sensorweb.ece.iastate.edu

Revised: 11/27/2017

Contents
1 Definition of Terms 3

2 Introduction 3

2.1 Project statement 3

2.2 Scope 3

2.3 Goals 3

3 Deliverables 4

4 Design 5

4.1 Operational Node Design 5

4.1.1 Network Protocol 5

4.1.2 Power & Monetary Savings 7

4.2 Home Node Design 8

4.2.2. Power Consumption 9

4.3 Web Application Design 9

4.3.1 Non-functional 11

4.3.2 Functional 12

4.3.3 Standards 12

5 Testing/Development 13

5.1 Hardware/software 13

5.2 Software Testing 14

5.3 Operational Node Range Testing 14

5.4 Operational Node Power Analysis 15

5.5 Operational Node Network Testing 16

5.6 Operational Node Sensor Solution Testing 16

5.7 Home Node Testing 18

PAGE 1

6 Results 21

7 Conclusions 22

8 References 24

9 Appendices 25

9.1 Operation Manual 25

9.1.1 Operational Node 25

9.1.2 Home Node 25

9.1.3 Web Application 26

9.2 Alternative / Other Initial Versions 27

9.3 Other Considerations 27

9.4 Code 27

9.4.1 Operational Node Code 27

9.4.2 Home Node Code 27

9.4.3 Web Application Code 27

9.5 Independent Assessment 28

9.6 Market Solution Invoice 28

9.7 Other Considerations 30

9.7.1 Enabling Technology 31

9.7.2 Closely Related Projects 33

PAGE 2

1 Definition of Terms

Term Description

PCB Printed Circuit Board

Operational
Node

A PCB with a NRF24L01 (wireless chip) which wirelessly receives and
transmits data across the network to the home node. Can be a leaf node or
internal node in a routing structure.

Home Node A middle-ground station with radio transceiver and 2G-enabled transmitter.
Data captured from op-nodes will be relayed to a web-app.

Web
Application

A web server hosting a RESTful web service for the home nodes to
communicate with, and a website for users to view data on.

2 Introduction

2.1 PROJECT STATEMENT

The project is to make a network of nodes to capture data, relay that data to a web application, and
display that data to the user. In the current market, an agronomist can buy a single sensor to
monitor temperature, soil moisture and other data for nearly $2,500 along with a $500 annual
operational fee. This team’s solution is to develop a system that will have network of nodes that can
measure this data at an affordable price. The system is made up of several operational nodes that
collect the data, using some abstract sensor, and pass the information along to a single home node.
The home node is capable of using a wireless cellular network, and can compile the data from all
the operational nodes and send this data to a web application, where it can be viewed and
interpreted by users. Each of the nodes is designed to last up to 7 months on a battery pack while
being cheap and disposable so they can be easily replaced.

2.2 SCOPE

This project could benefit farmers; this is the target case in mind that the system is designed for.
These cheap, wireless nodes will be able to send data about the moisture in the soil, temperature,
and other desirable data. With this information, the farmer will know which areas of their farm
need to be irrigated or why crops may be performing better in some areas rather than others. Other
potential applications of the project include being used in military settings or measuring erosion of
a hill over time.

2.3 GOALS

The team is divided into three sub-groups for this project based on each individual’s skills. The

PAGE 3

Web Application team will be led by Ian Harris and Gregory Steenhagen. The Operational Nodes
team will be led by Tim Lindquist and Steven Warren. The Home Node will be led by Terver Ubwa
and Khoi Cao. The goal of the project is to create network of nodes that can relay sensor data.
These nodes will be able to send the data no matter the geographical configuration of the sensors
as long as they are within transmitting/receiving distance of each other. These nodes can be in a
straight line or clustered together. These nodes will be wirelessly sending the information via radio
transceivers and will then be sent up to the cloud through a home node with cellular capabilities. A
website will then display this information for the user in an informative and simple interface.

3 Deliverables
The team successfully delivered the three parts of the project that were specified above. The
implementation includes several operational node prototypes that have expansion slots that
compatible sensors may be attached to. The operational nodes are disposable, with a price point of
under $15 per node. This allows the system to be easily scalable to integrate both larger and smaller
networks. This is also a competitive price in the market and allows this product to be marketable.
Additionally, a prototype exists of a home node that has cellular capabilities that can transfer
information via REST endpoints. Finally, Sensor Web is a functioning web application that can
store this data and display it to the user in a concise and easily interpretable way.

PAGE 4

4 Design
The team broke the project down into three parts. The first are the operational nodes, the second is
the home node, and the final part is the web application. The overall system design can be seen in
the flowchart in Figure 1.

Figure 1: Overall Design

4.1 OPERATIONAL NODE DESIGN

The design goal of the operational nodes is to have a low power and low cost module that is
equipped with exchangeable sensors for metrics such as temperature, pressure and moisture. The
data is read from these peripherals and transmitted to the home node through the node network
each day at a specified time. When the system is not transmitting it is in a sleep mode until it is
called upon by the home node in order to conserve power. A simple example of a node network is
shown in Figure 2.

4.1.1 Network Protocol

The operational node protocol is defined as follows. The operational nodes operate by all being
given a unique ID. When the home node requests data it will send out a struct that contains the ID,
sensor data, path, place in path, command and return flag. The ID represents the node the system
wants to get data from. Sensor data is the measurement taken by the operational node prior to the
request. The path defines a single route through the node network the system will take to reach the
desired operational node. Return flag is a boolean which determines if the call is going out (1) to a
node or if data is being sent back (0) to the home node. The place in path is a integer which defines
where the protocol is in the path (which node it is currently searching for). The place in path will
be incremented or decremented based on whether the return flag is 0 or 1. Lastly, command is
used for special circumstances such as sleep mode.

PAGE 5

Figure 2: Operational Node Network Example with Home Node

The order of the paths is handed to the operational nodes. This results in the furthest node on a
path will be called first, and the closest and shortest path operational node, will be called last. All of
the nodes will listen and if the place in path corresponds to their unique ID, they will either
forward the data to the next spot on the path or if it is at the end of the path, the node will return
the sensor data requested.This process continues until all data has been received by the homenode.
An example path shown in Figure 2 to retrieve ID 3’s data would be Home Node -> ID 1 -> ID 2 ->
ID 3. The path would then return in opposite order, ID 3 -> ID 2 -> ID1 -> Home Node.

This path networking protocol was chosen because of its ability to be power efficient due to its
speed and efficiency. Other protocols examined such as the CSMA/CA networking protocol.
CSMA/CA is designed such that a node will wait until there is no traffic on a radio frequency then
wait a random amount of time before transmitting its data. Once the data is transmitted, a node
will wait for a period of time for an acknowledgement (ACK) from the receiving node. If the node
times out and no ACK was received, it proceeds the same transmit protocol as above. The issue
with CSMA/CA in this system is the potential of an exorbitant amount of transmitting from the
operational nodes. This extra transmitting uses a great deal of power which can not be afforded in
our system due to power and cost constraints.

Once all of the data has been collected by the home node, the home node will begin a sleep
protocol. This sleep protocol is based off timing. The operational nodes will follow the same
network protocol for receiving and transmitting data. This time, the command variable will be set

PAGE 6

to sleep, and the data will be set for how long the operational node should sleep. The cause an
operational node to enter the sleep mode. Once all of the paths are sent by the home node, all of
the operational nodes will be in sleep mode. Sleep mode will be attained by using the rocketscream
library that shuts off the transceiver and other power hungry circuitry to save power. The
operational node will wake up by utilizing the watchdog timer (WDT) to keep track of time and
checking if the sleep time has been attained. The ATmega 328p has a internal watchdog timer
(internal oscillator) that can be calibrated up to 1% accuracy. If nodes are waking up every 12 hours
for a reading, this would result in a maximum drift of ​+​ 8 min. Because of this, the home node must
wait a at least 8 min for all the nodes to wake up before requesting data from a node. We consider
the homenodes clock as a point of reference since it has an accuracy of up to 1 sec every 30 years.
When sleep mode is over, the node re-enters receive mode and takes a measurement while
awaiting the next home node request.

4.1.2 Power & Monetary Savings

Figure 3: Operational Node PCB Cost

The operational node will be designed on a PCB to create power efficient, cheap, and easier to use
system. By using an ATMega32p microcontroller, the operational node will have less hardware than
an Arduino thus saving power. The sleep mode will also dramatically reduce the power used in the
system. The power savings are described in more detail in the ​Power Testing​. By moving the circuit
to a PCB, the entire system decreases in cost to almost $11 as shown in Figure 3.

PAGE 7

4.2 Home Node Design

4.2.1 System architecture diagram

 ​Figure 4: Design Structure of the Home Node

The home node is designed to retrieve a path from an api (web address). The retrieved path is an
array of nodes that leads to the desired node as specified by the system’s shortest path calculation.
The home node then relays the retrieved path to the sensor nodes. Also, the home sends out sleep
and wake time to the operational nodes as well as receives the sensor data from them. It also post
the data to the server so the user can access it. The home node has a bidirectional communication
with the operational nodes and the web. The home node uses transceivers to establish bidirectional
communication with the operational node. On the web app end, it uses HTTP POST and GET
commands to establish communication. The HTTP POST and GET methods are achieved using a
2G module(sim900).

Once the path is retrieved, the home node will try to wake up the first operational node in the path
and parse the path array to that node. After the transmission is complete, the home node starts a
waiting loop for operational node response (receiving) with 5-second timeout. In the meantime,
that operational node then determines its location in the path and continues to call upon the next
operational node (see 4.1.1 Operational Node Design). This process will continue until the final
node in the path has been called. The sensor data of the final operational node will be transmitted
backward to the home node along the same operational nodes (in the path). The whole
bidirectional communication event is expected to be performed within 5 seconds. Otherwise, the
home node will break out of the waiting loop and return an empty data set.

After the data is collected by the home node, it is then processed into a JSON format and then
uploaded to the web application over a 2G cellular network. This data is made available to the
users over the webapp.

The web-server will return "a flag" value indicating the POST is successful. It will be checked by the

PAGE 8

home node again. If the flag returns success, the home node will send out sleep command to the
op-node network and itself. All nodes will go to sleep thereafter in order to cut off power
consumption. If not (flag returns no success), the home station continues to relay sensor data to
the web until success.

4.2.2. Power Consumption

One of the main concern while attempting to design the power supply was power consumption.
According to the datasheet, the SIM module requires a high current to power up. Hence, this
module must be equipped with more robust batteries as it would require more power than the
operational node. Since the goal of this project is building system out of easy to find, inexpensive
parts, Li-on or Li-po battery with high capacity were selected to design a power supply. There were
other solutions to this problem, and the solution we also came up with was using a Li-po battery
with a solar-charging circuit. However, that should be considered as an alternative option because
it was overpriced.

4.3 WEB APPLICATION DESIGN

For the web application, two different technologies were used to accomplish the needs of the
project. First, a REST api was built using Spring Boot, so the home nodes could communicate with
the database using HTTP requests. Spring Boot allowed the REST service to be compiled into a jar
file that can be deployed on virtually any type of server that supports java (i.e. any linux or windows
based server). The home nodes would send an HTTP request to the Spring Boot application
containing node data, which then gets parsed, and stored in the database. Laravel, a PHP
framework, was used for the user interface portion of the website. This front end application allows
the system to deliver and populate web pages. These pages provide an interface to allow users to
create accounts, claim home nodes, and view the data from those nodes. Between these two
technologies is an SQL database that both services can access to store and retrieve relevant data.

The REST api (back end) offers a few key services. First, it allows the home nodes to send data to
REST endpoints with a simple format. The home nodes are able to send JSON objects via POST
requests to url endpoints. Second, it allows the web application to do much of the heavy lifting
when calculating the shortest path between the home node and any given operational node. By
using a Floyd Warshall algorithm, the application can calculate the shortest distance between any
two nodes and use the resulting matrix to extract the shortest paths between the home and
operational nodes. By doing this, the operational nodes are able to spend less time transmitting
with a less efficient protocol. This allows the operational nodes to spend more time in the low
power state, resulting in lower power consumption. All of this information is stored in the SQL
database, and the paths to each node are retrieved via REST endpoints from the spring-boot
application.

The user interface (front-end) provides a clean interface to add nodes and view their reports. The
organization of data is fairly straightforward: A user can add home nodes, and underneath those
they can add operational nodes. When they enter this information, they are prompted to provide
GPS coordinates for each node (both types) that will inform the route calculation to be used when

PAGE 9

transmitting data. When nodes begin reporting, graphs are displayed for averaged data of all
operational nodes for every home node that a user owns, as well as more specific data over time
graphs if the user selects a particular operational node. The goal is to provide easy to look at data
on the first page the user sees after logging in. All of this information is retrieved from the SQL
database.

4.3.1 Non-functional

PCB layout and circuit schematic of the circuit for the operational nodes.

Figure 5: Operational Node PCB

PAGE 10

Figure 6: Operational Node PCB Schematic

3D casing for the Home Node

 The casing for the home node was designed using Autodesk fusion(A CAD tool). It then was
printed out using a 3D printer.

 ​Figure 7: 3D capture of the home node case

4.3.2 Functional

● The system includes a home node with wireless capabilities to receive data and send it to a

PAGE 11

remote server.
● The system includes operational nodes with short range wireless capabilities to send data

to the home node.
● The system includes a server to receive data from the home nodes.
● The system includes a web application to display the collected data to the user.

4.3.3 Standards

This project does not currently possess any practices that would be considered unethical by
organizations such as IEEE, ABET or others. The goal is to help society and more specifically
farmers by increasing their crop yield with the information that they receive from the sensors.
Standards can be beneficial so other students could pick up and continue the project. It also allows
for the students currently working on the project to understand industry standards defined by IEEE
and ABET.

● The system follows the standard REST protocols (POST and GET) in the web application.
● The system follows javadoc in the implementation of the microcontroller for the Home

node.
● The system follows I2C protocols for some of the hardware operations.
● The system runs on legal frequency ranges (2.4GHz for operational node).

PAGE 12

5 Testing/Development
The testing and development of the project is described herein. The testing was divided into each
of the three subgroups. This was done to ensure the hardware, software, and protocols were being
tested to the specifications of the project and system.

 5.1 HARDWARE/SOFTWARE

Below are the main components for the hardware and/or software used in the testing phase.

Software:

Postman: A program that can create web requests manually, and allows the team to verify that the
application’s REST endpoints are working as intended.

JSONLint: Check the JSON format for the data layout sent from the home node.

JetBrains IntelliJ: A Java IDE developed by Jetbrains for Java development.

JetBrains PHPStorm: A PHP IDE developed by Jetbrains for PHP development.

Maven: Dependency management for java projects.

Jackson: A JSON deserializer to map JSON objects to Java objects.

JUnit: The Java unit test suite.

Hardware:

Arduino: The operational node group is using Arduinos to test receiving sensor data and
transmitting/receiving data from the NRF24l01+. The Arduinos will be helpful for testing as they
have the same microcontroller that will be used in the final revision of the operational node.

NRF24l01+ : These are small and inexpensive wireless modules that integrate well with Arduinos.
The testing of these modules will assist in developing the wireless network so the Arduino will be
capable of sharing its data.

2G module: provided by Geektech, this item is guaranteed to integrate well with Arduino. It
includes the SIM900 module that supports most of US carriers and allows to send and receive GPRS
data (TCP/IP and HTTP post) with AT command interface. This module will help establish a
continuous connection between the home node and the server over the long distance.

PAGE 13

5.2 SOFTWARE TESTING

The web application is currently running on a publicly accessible server, can receive data
from the home nodes, and can display data for logged in users. While developing the REST for web
service, the web team used Postman to send test data to the server, and make sure that the data
was formatted correctly. Postman is a piece of software that allows the web team to mock REST
calls by sending data directly, mimicking what the home-node would/should be sending. The user
interface portion of the web application was built and tested using a local PHP server. By using a
local development server, iteration can happen quickly when developing the user interface. Both
the user interface and Spring Boot application used a locally hosted MySQL database during
development. In addition to “functional testing”, JUnit tests were used to test the shortest path
algorithm. Test data is provided, and the tests are able to verify that the algorithm is performing as
expected.

5.3 OPERATIONAL NODE RANGE TESTING
To test the range of the transceiver, Tim built a program that checks the number of

correctly received packages and displays the data as a signal strength percentage. 500 data points
are collected and stored in an array, if a package is correct, that array index is 1 and if it is incorrect
or missing the array index receives a 0. After which a continual averaging system sums the entire
array and divides by 5 to get a number between 0 and 100 corresponding to percentage. The array is
incremented and reset upon overflow. A size of 500 was chosen to create a large enough window
for some stability during the discrete time averaging. The program finally outputs the percentage
value to be displayed over serial interface.

Figure 8: NRF24L01 Range Test

PAGE 14

Testing was done by going to a rural road in an open area. The transmitter was attached to

the gate of the truck and the receiver was mounted on a stationary table in the road. The initial
starting point was recorded using GPS coordinates. Communication with the driver was done over
cell phone. The test began by plugging in the transmitter and starting the serial logging of the
signal strength data. At that point the truck drove forward at a constant 10 mph. When the data
zeroed out, I signaled the driver to stop as well as stopping the data log. The end point was
recorded using GPS coordinates. A graph was constructed of the signal strength vs distance by
determining the distance between the two points and then mapping the incremented values to the
data points.

Average plot of the trials showed that transceiver has a reliable distance up to 200ft. After this, the
signal strength drops off steeply. The stronger wireless transceiver exceeds this distance but was
not used for testing because they are more expensive modules to buy with unreliable suppliers.
These sensors are to be placed one per acre.

5.4 OPERATIONAL NODE POWER ANALYSIS

Figure 9: Power Characteristics

Figure 8 shows the power characteristics for the a operational node. For power testing of the nodes
the operational node team went through the datasheets for the power consumption of the main
components. It was found that the transceiver consumed the most power and because of this, the
team wanted to use it as little as possible. The calculations above show the total power by breaking
each component up into its dynamic and static power consumption components. From this the

PAGE 15

team found the amount of time each component would be on during a day and then calculated the
amount of energy used in a day. From that data, the team derived the total power to be 2.98mW.
Because the team knows the capacity of the batteries, the team is able to estimate how long they
would last with this power requirement. It was found that if 3 AAA cell batteries were used, the
user will get approximately 7 months of life from a node. This covers the growing season for
farmers which allows this to be a viable option.

5.5 OPERATIONAL NODE NETWORK TESTING

Testing to see if the operational nodes work was done by setting up a network around Coover Hall.
In this test the first and last node were out of range of each other and thus needed to communicate
through a middle node to reach. This test had 4 nodes that did a loop around coover. The
operational node team built a program to mimic the home node to call out and receive the nodes
data since their part was not completed at the time of the test. This proved to be successful by
relaying the correct sensor data through the network for each node called. From this the
operational node team was able to conclude the network algorithm works correctly.

5.6 OPERATIONAL NODE SENSOR SOLUTION TESTING

figure 16: Commercial Sensor

Commercial moisture sensors come in a wide range of prices and measurement techniques. The
sensor in figure 16 is a resistive gypsum sensor bought for $40. For being a block of gypsum with 2
electrodes inserted this price is incredibly steep. Tim set out to design a potential low cost sensor

PAGE 16

for our group shown in the efforts below.

figure 17: Capacitive Sensor Prototype Testing

This testing was done on a material provided by the ABE department. The figure above shows the
effects of the samples capacitance in a dry and 25% moisture environment. From the initial results
you can see the group of lines above represent 25% moisture and the group below dry. This shows
that the materials capacitance increases by over 2 orders of magnitude when it is introduced to a
25% moisture environment.

figure 18: Resistive Sensor Prototype Testing

Above in figure 18 shows the resistive gypsum sensor Tim developed. It is comprised of a PCB of
meshed fingers to increase surface area of the border between separated plates to decrease
resistance. On top a slurry mixture of crushed gypsum mixed with a adhesive to form the variable
resistor. On the right shows an initial test of the sensors resistance readings. At time 0.1 hour the
sensor is placed in a 25% soil moisture environment. Readings stabilized at an hour and the sensor
was moved to a dry environment. The last of the readings show it returning to the dry resistance

PAGE 17

level over the course of a few days.

5.7 HOME NODE TESTING

Homenode testing was divided into two parts. The fist part was communication with the web app
and the second part was communication with the operational nodes. For web app communication,
the homenode was tested by sending out a GET command to a server. The home node (HTTP
functionality) was initialized using AT commands and then the reply from the API(web app) was
displayed on the Arduino serial monitor. The reply contained the path to the desired node. The
home node then extracted the path from the reply using loops and then put it in an array(path) in a
struct which was then sent to the operational nodes . For operational node communication, the
operational nodes were simulated using an Arduino equipped with a transceiver. The simulated
home node (which had the 2G module and transceiver) was made to receive(path from api) and
then transmit the desired data(path) to the simulated operational node. The home node after
transmission, switched from transmitting mode (transmitting path) to receive mode(to receive
sensor data). The home node extracted the sensor data from the received struct and converted the
data into a JSON format string. This string was printed to the serial monitor to ensure its accuracy.
The data (in JSON format) was then posted to a test server (posttestserver) using POST command.
Each of the procedures mentioned above(web communication and operational node
communication) were tested separately and then were combined and tested as a unit. For
debugging purposes, a serial monitor was used to display the result. The serial monitor output is
shown on the next page

PAGE 18

 ​Figure 10: Arduino Serial monitor display of module initialization

PAGE 19

 ​Figure 11: Arduino serial display of path acquired and sensor data posting initialization. A red circle
indicating the path array which is retrieved from the web-server.

 ​Figure 12: posttestserver display of data in JSON format by the home node.

PAGE 20

5.8 HOME NODE POWER ANALYSIS AND COST ANALYSIS

 ​Figure 13: Homenode Power analysis

As shown in the power analysis data, for testing purposes, the home node is using the Lipo battery
which can last for 1 week 5 days if the home node is active for thirty mins a day. However, in order
for the home node to have energy supply throughout the duration of the planting season, it would
need to be equipped with a battery that has the rating of at least 7980mAh (preferably slightly
higher) and a voltage supply of 5 to 12V. Although we did not try to reduce the current requirement
of the home node since it was not the aim of the project and the time constraint was not
favourable, we were able to note that using a home node specific controller would significantly
reduce the current requirement.

Apart from energy cost, the components cost was also analysed as shown in the figure above. The
components all together cost $42. This cost does not include that of obtaining a sim card and data
plan.

PAGE 21

6 Results
6.1 Home Node Testing Results

 The group tested the 3G module to ensure proper communication with the Arduino
(microcontroller) and that it was able to post and request the web application. Initially, the
Arduino was unable to read data from the 3G module (SIM5320). It was believed that the Adafruit
library didn’t fully support all AT commands of the module, which caused the failure of network
initialization. Several different modules were used for testing to determine the feasible hardware
for the purpose of this project. Eventually, a SIM900 module was selected because it came with
fully supported AT command library. With sim900(which is a 2G module), the group was able to
read data from the api provided by the software group; also to post data to a test
server(posttestserver). Moreover, the network coverage of 2G is is superior to that of 3G or LTE.
With 2G, the better reception can be achieved even in a remote rural cornfield where 3G is out of
service. And most 2G module is also cheaper than 3G ones. Therefore, sim900 was able to meet all
the requirements needed for the project in term of technical support, network coverage, and price.

6.2 Operational Node Testing Results

The range testing proved to work as expected and covers the range of our intended application. The
power analysis also proved to be successful as the node should last 7 months, which should be long
enough to work during a farmer’s intended season. The node network test was also successful and
the network can be scaled up to a much larger size.

6.3 Web Testing Results

In the web testing, data is sent to the web site (Sensor Web) and the data sent has to be in JSON
format. In the testing procedure, a JSON format data and a data which is not in JSON format is sent
to the web to verify if the web can detect the format type. The web is able to detect the format of
the sent data. Web testing results can be seen below in figure 13 . This quick and dirty interface
allowed the home-node team to send data to the web application and verify that they were sending
it correctly. The process was later refined to verify that the de-serialization process was happening
correctly, instead of just verifying that the string was valid JSON.

PAGE 22

 Figure 13: Web Testing Results

7 Conclusions
The first hardware group (Operational Node) determined what sort of communication would be
best between the operational nodes and the home node. From there, they had to decide on which
hardware satisfied their needs of low power and inexpensive. In the end, the team decided on an
ATmega microcontroller with an attachable transceiver. The NRF transceiver was chosen, because
the it met the distance requirement was reliable and are incredibly cheap. The node modules are
easy to produce, and manipulate, which makes sending and receiving data simple. They developed
a PCB that would work as their operational nodes and software to have their operational nodes
operate in the network configuration. The operational node is a success, it is under cost, transmits
in a network configuration, and meets power constraints.

The second hardware group (Home node) uses an arduino as a controller and a 2G module to send
sensor data to a remote server and receive path to a specified node from an api provided by the web
team . This is conveniently done by converting the data to JSON string format before posting it.
The 2G module offered a more reliable AT command and a robust arduino library therefore, it is an
easy choice for our purpose. Apart from the reliability of the module, using it alleviates the worry of
not having WiFi or Ethernet in the field since the module relies directly on cellular data. Other
than communicating with the web app, the home node also communicates with the operational
node. it achieves this by using a transceiver to send path and receive sensor data from the
operational nodes. it also sends the nodes a sleep and wake time. The nfr24l01 transceiver was used
for this purpose. The use of this transceiver removed the concerns of compactability with the
operational node since the operational nodes uses the same transceiver. Also, the transceiver has a
robust arduino library and it is relatively cheap compared to other means of radio communication
that would have served this purpose. The home node meets all its requirement of operation.

PAGE 23

however, the price can be reduced if an arduino clone is used as a controller and a 2G shield is
built from scratch.

The Web Application team ended with a system that used Spring Boot to create REST endpoints,
and a PHP application that would deliver web pages. It is not uncommon in industry to have two
separate applications for front and back end, and it allowed the members of the team to work with
technology they specialize in. We were able to use JUnit to prove that our shortest path algorithm
worked, and the Home Node team verified that they were able to GET paths from our REST
endpoints, as well as POST sensor data. Our front end can be viewed as expected from the domain
provided to us by ETG, with information pulled from our database.

At the outset of this project, the team’s goal was always to create proof of concept. The team
believes that this has been accomplished. The team has delivered a cost efficient operational node,
a prototype for a home node that has internet access, and a web application that can recieve and
organize the information from the home nodes.

PAGE 24

8 References
[1] Miner, Andrew. "Networks 2." Lecture.

[2] Tuttle, Gary, Barebones Arduino.Print

[3] TempuTech, "Wireless Sensor Monitoring," TempuTech, [Online]. Available:
http://www.temputech.com/26-home/slider/113-wireless-sensor-monitoring. [Accessed 21 02 2017].

[4] Banner Engineering Corp. "Wireless I/O & Data Radios | Products for Industrial & Process
Automation." Banner Engineering. Banner Engineering, n.d. Web. 21 Feb. 2017.

[5]unknown, "eba," eba, 2016. [Online]. Available:
http://www.educational-business-articles.com/5-step-problem-solving/. [Accessed 21 02 2017].

[6] Kolita-Forbes, Amy. Soil Testing Interview. 3 March 2017.

[7] Behrens, Jake. Biodegradable 3D Printing Information Session. 23 February 2017.

[8]“Aqspy Demo.” Login, Aqspy, 30 Nov. 2017, demo.agspy.aquaspy.com/.

[9] “Login.” FieldConnect, John Deere, 30 Nov. 2017, login.fieldconnect.deere.com/login.

[10] Vellidis, George. “Vellidis Research Group – A dynamic blend of engineers and scientists.”
Vellidis Research Group, 2017, vellidis.org/.

[11] Moon, Youngbag. “Sensor Data Management System in Sensor Network for Low Power.” IEEE
Xplore Library, IEEE, 17 Feb. 2008, ieeexplore.ieee.org/document/4493812/.

[12] Cardell-Oliver, Rachel. “A Reactive Soil Moisture Sensor Network: Design and Field
Evaluation.” International Journal of Distributed Sensor Networks, Sage Journals, 1 Mar. 2005,
journals.sagepub.com/doi/abs/10.1080/15501320590966422.

PAGE 25

9 Appendices

9.1 OPERATION MANUAL

The following is a description of how to operate each subgroup’s module.

9.1.1 Operational Node

The following procedure will discuss how to set up the operational nodes:

Materials needed:

Laptop, GPS, Shovel, Node, Batteries, Marking Flag

Procedure:

Determine a location in your field to place your nodes. Keep in mind the distance requirement that
separation must be less than 1 acre for functionality. After that, go to the location where you would
like to place a node. Using a GPS record the coordinates of the node and the given ID you are
providing it in a spreadsheet.

Next it is time to flash the software on the node. First switch the node to the OFF state so that
potential differences won't affect programing. Connect the ICSP connector head to the node and
plug the serial programmer into the laptop's USB port. Alter the code to have to correct node ID
and perform a serial program to load the code onto the chip. After this time unplug the ICSP
programmer from the node and insert 3 AAA batteries into the module.

Now it is time to attach the moisture sensor. Use a shovel dig a hole at the correct depth for your
analog moisture sensor. Place it in the hole with wire leads coming out and burry the sensor. Now
connect the instrument to the nodes analog port A0.

Lastly, flip the switch to the ON position to turn on the node and begin the program. place the
node on the ground with the transceiver upright. Place a marker flag near the node to visually
represent its location. The node will now sit in listening mode until the next call period by the
home node. Once updated into the database with the laptop recorded information when called
upon it will enter the loop and become part of the network.

9.1.2 Home Node

In this part, the Home node setup procedure:

materials needed:

2G module(GeekTech 2G shield), arduino, transceiver, jumper wires(male and female),
battery, laptop.

PAGE 26

In the home node setup, arduino programming knowledge is required. A basic understanding of
AT commands is a big plus since they are used to program the module. However, AT command
look up sheets are available online for reference. (make sure the AT command sheet you are
looking up is compatible with your module).

 In the final prototype,

Procedure:

Place the 2G shield on the arduino such that pin 7 and 8 are the receive and transmit pins of the
arduino uno(the shield is designed to fit perfectly so do not force it on to the arduino). Use jumper
(male and female) wires to connect the transceiver to the arduino(make sure to avoid 2G shield
reserved arduino pins by reading the shields data sheet). Power up the arduino. In order to
conserve energy, the home node system uses a solar charged battery to provide power to the
arduino and subsequently to the transceiver and the 2G module. Compile the home node code and
upload the code to the arduino. For the system to work as designed, it has to be within talking
distance with the operational nodes as specified in the transceiver datasheet. The home node
would post an ERROR in place of sensor value to the web app if operational node is not reached.

9.1.3 Web Application

Materials Needed:

A web browser, a linux server

Disclaimer:

The web application should not be hosted by the user, but instead would be provided by a
3rd party provider (our team in this case). The high-level deployment strategy will be discussed, but
the user is not expected to have to perform any of these tasks.

Spring Boot App Deployment:

Code for our spring boot application can be found on github (see section 9.4.3). This is a
Maven project, and should be imported to a Maven compatible IDE such as Eclipse or IntelliJ. The
project is configured such that a `maven spring-boot:repackage` command will build the project as
a Jar. From there, the application should be deployed on the linux server, or other machine. For a
linux server, this can be accomplished by using `java -jar name_of_jar.jar`. Ideally, this command
will be run as a service, but that won’t be covered here. Spring-Boot runs as an Apache Tomcat
server, and will require port 80 to be accessible, a domain name to be configured, and not have any
other services binding to port 80. The port may be edited in the project’s application.properties, but
will only be available via HTTP if port 80 is chosen.

PHP Application Deployment:

PAGE 27

Code for the PHP application can also be found on github. This project is a Laravel
application, which is a PHP framework that gives us the ability to manipulate object-relational
mapping to maintain the database and the MVC architectural pattern to handle routing, views, and
data processing. Since this project was version controlled using Git, to deploy the latest version of
the project all that is required, is a pull from the master branch onto the live server.

MySQL Deployment:

Our project was built using a MySQL database which requires a MySQL server running on
a linux server. To handle database updates and changes, we use the MySQL command line to dump
our local database changes, and then use the dumped file to inject those changes into our live
database.

9.2 ALTERNATIVE / OTHER INITIAL VERSIONS

Other versions of the operational node network protocol was developed earlier in the first
semester. This network design was designed such that every node would send out the new
information and then not send that information again unless it had the return flag set to high. This
had many issues including not working if there were any transmission collisions. Data Packets
could easily become corrupted if two operational nodes happened to receive the information at the
same time and transmitted at the same time. These collisions were not experienced in testing but
were recognized as a possible problem. To overcome this issue, the new node network protocol was
designed as discussed earlier in this report.

9.3 OTHER CONSIDERATIONS

The operational node group also considered using XBee technology. This was quickly disregarded
as this would not reach the price goal of this project as XBee technology can cost ~$40 per XBee
while the radio technology this project uses is ~$1 per radio.

9.4 CODE

The code for the following subgroups is shown below.

9.4.1 Operational Node Code

https://github.com/timlindquist/Sensor-Nodes

9.4.2 Home Node Code

https://github.com/Kacao9x/491_IoT_monitor/tree/master/Home-Node

9.4.3 Web Application Code

https://github.com/csteamengine/sensorweb

PAGE 28

https://github.com/timlindquist/Sensor-Nodes
https://github.com/Kacao9x/491_IoT_monitor/tree/master/Home-Node
https://github.com/csteamengine/sensorweb

9.5 INDEPENDENT ASSESSMENT

To gain feedback on our working system we reached out on faculty and industry experts. The first
was Dr. Amy Kaleita-Forbes whos is a Associate Professor in Agriculture and Biosystems
Engineering. She provided system and website suggestions on different types of plots useful to soil
moisture analysis. Dr. Kaleita-Forbes was especially helpful with her input of how to obtain
different moisture levels in soil, this was used throughout prototype sensor testing.

Next Tim reached out to Dan Bredbeck an applications engineer at Certainteed Gypsum. Dan gave
advice and suggestions for how to go about getting gypsum onto a PCB substrate. He came up with
growing a crystal or a slurry solution.

Lastly Steve, Tim and Dr. Geiger sat down with Dr. Sally Logsdon a soil scientist at the National
Laboratory for Agriculture and the Environment to discuss our solution. Dr. Logsdon informed us
of the optimal depth of burying the soil sensors: 5 cm, because it is a good representation of
surface moisture content and can be used to model deeper depths. She also brought up a concern
of mice and lightning ruining our operational nodes and sensor cables. We didn’t think lightning
would be a concern since our operational nodes a low to the ground, however mice may be a
concern. Because of this, precautions, such as a silicone coating, will be used to shield the devices.
The last thing we discussed was people's sensitivity towards pollution. We would like to leave our
sensors out in the field and not have to worry about clean up when they die. This would save
money as most of the solution cost is in labor. We could automate the system by placing an auger
on a tractor to drop the modules at preset location and not have to worry about later capture. Dr.
Logsdon did not think this would be an issue as the operational nodes were tiny.

9.6 MARKET SOLUTION INVOICE

Provided are invoices for commercial soil moisture systems. The system shown is from a company
called Servi-Tech. They charge an annual installation/removal cost of $450 and an annual data
access charge of $250. The probes used for soil moisture sensing are gypsum blocks that vary
resistance.

PAGE 29

figure 14: Servi-Tech sensor costs

PAGE 30

figure 15: Invoice of Servi-Tech installation and removal

9.7 OTHER CONSIDERATIONS

Our team look at some out side resources to gain more insight about our project and potential
improvement. The first was if we could use some enabling technology and second was some market

PAGE 31

research of similar products on the market.

9.7.1 Enabling Technology

Hardware Firewall

Background

The Bluemix application our group chose to research was Hardware Firewall. This service
provides an essential layer of security to a hardware system. It prevents unwanted traffic from
hitting servers and allows for server resources to be dedicated for their intended purpose. IBM
offers Hardware Firewalls as a add-on feature for all servers on the SoftLayer public network. The
SoftLayer Hardware Firewalls work by being built on enterprise grade hardware applications and is
split into three different customer versions: Shared Firewall, Dedicated Firewall, and Fortigate
Security Appliance. Each version has it pros and cons and it's up to the customer to choose which
service will best meet their needs. Hardware security is a prominent threat in today's world. Many
cyber threats are constantly bombarding hardware and software systems. By having safety measures
in place such as this Bluemix application, consumers could potentially avoid major leaks or
injections of sensitive data from their product.

Relevance to our project
 Our project requires data transmission through a 2G module to a web application.The web app
we would be using for the project would require some amount of protection from hackers and
other unauthorised persons who might want to gain access. Also considering the fact that our
project can be modified to perform functions other than collection of data for farmers, the security
of the web app which would be used becomes even more relevant. ​SoftLayer’s Hardware Firewall
which provide security for customers and has a reputation for providing uninterrupted services and
since our nodes would have a sleep and wake time, this eliminates the issue of having to change the
engineering design structure of the project. Apart from the earlier mentioned advantages, there is
also the option of choosing between shared firewall, dedicated firewalls and the fortigate security.
This gives us more options to choose from in order to meet our need.

Implementation

Our team would implement this service by attaching the Bluemix Firewall to our hardware
nodes that are out in the field. This feature will assist in keeping the system locked down and
secure. We have already taken precautions within our team to prevent hackers or unwanted traffic
from retrieving our access to the system by using Iowa State’s servers. Given that we made our
entire system through Bluemix and not Iowa State, we would need a security platform such as the
Firewall through IBM’s Bluemix.

Another aspect of security for our project is we would need to prevent intruders from
accessing our server through our hardware nodes. This is where Bluemix’s Hardware Firewall would
come into play. It would ensure that a hacker or unwanted traffic could not get to our server
directly. The Hardware Firewall would also allow us to keep unwanted traffic from entering
through our hardware in the field (nodes). This is likely where we have the least amount of security

PAGE 32

so having a system that is capable of keeping the information in our nodes to the server in a secure
fashion would be most beneficial.

When looking at the features that Bluemix is offering, our team needed to ensure the specs
of the tool would work with our application. The throughput that the server is expecting from the
node’s side is going to be minimal, possibly a few hundred bytes a day while the spec allows up to
2000 Mb per second. Also the option of utilizing a gui for setting up the firewall is beneficial
because over 60% of our team is focused more in hardware rather than software.

Pros

As is the case for any pre-built application, there are pros and cons associated with using
SoftLayer’s Hardware firewall. One pro that comes from using this service, would be the extreme
customization provided by SoftLayer. Up to 79 different rules can be configured for the primary IP
address associated with the server. With such a high level of customization available, we would be
able to configure the firewall to best serve us. By defining the format of the data that is sent to our
server, we could save the server from ever having to parse that data.

Another positive effect that would come from using this application, is that it can be added

on to our project at a later date. Instead of requiring us to setup the firewall during development
stages, and having to fight with it throughout the entire development process, we would be able to
focus on implementing the communication protocol of our project first, and focus on securing it
later.

Cons

There are definitely positives for using a pre-built firewall solution, but Bluemix’s option
has some downsides in the context of our project. The firewall is a physical device, meaning it must
be attached to the local network of the server. While the plug-and-play nature of the device is
convenient, it provides some challenges for our project that leaves us with two options. First, we
would need to host our web application through one of Bluemix’s other services. Second, we could
likely buy a physical device, but that begs the question is it worth it? Another potential downside is
that if the device goes down, all servers behind the firewall are exposed. By running the firewall on
the server itself (which is relatively easy on Linux, like we are already using) all services go down,
which almost seems preferred to having an exposed server. Between the cost and the availability of
what we already have, Bluemix’s firewall service seems to be a little overkill unless we were already
using other services they offer.

Conclusion
Internet of Things (IoT) is growing faster than ever before; it still has to cope with the common
challenge of the cyber world: security threats. BlueMix, the Hardware Firewall appears to be one of
the most popular security solution for IoT system. With the advantage of the versatility and
universality, BlueMix can support to a wide range of customers, from small individual projects to
large-scale business ones. For our current application, the cost of services and supplies is, however
a barrier for us to access to this technology. This makes BlueMix not a practical solution for now. It

PAGE 33

still be a great solution for the future plan as our sensor web can be scaled up with additional
functions and data.

9.7.2 Closely Related Projects
The fundamental purpose of engineering and science in general is to better the lives of human
beings. It is therefore not a surprise that agriculture has been significantly advanced through the
application of engineering. In our senior design, we further investigated a way to make smart
irrigation less expensive. Although our approach does not offer automated irrigation, it is able to
give details about the soil and detect areas where irrigation is needed. The information provided by
our smart irrigation system can readily be made available for a user in the convenience of their
home, office, or even on an airplane regardless of their location in the world as long as they have
access to the internet. This flexibility in providing 24 hour access to soil information is possible
because we utilized internet of things (IoT). Apart from monitoring soil moisture content, our
project has the ability to incorporate other sensors that would monitor different soil characteristics
which might be of interest to the user.

The first research paper our group looked at was an article in the IEEE Xplore Digital
Library titled “Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges.”
This article discusses the importance of being able to process large amounts of data. The main
point is that a lot of data with no way to perform analysis is considered worthless. It also talks
about some problems such as privacy, big data mining, visualization, and integration.

The paper begins by describing the IoT movement (IoT movement is a platform for

sensors and devices to communicate seamlessly and share information across platforms). Today
there are over 50 billion devices connected to the internet and the next revolutionary technology by
benefiting the full opportunity of this technology. The following section to this is, taking the large
amount of data and performing analytics on it. This requires tools that can handle structured,
unstructured and semi structured data. Some systems that are available are real-time, off-line,
memory level and massive analytics. The last thing this article talks about is the relationship
between IoT and the data analytics which describes the two as going hand and hand for the IoT
devices.

This article is working with IoT just like our project. However, the article is on a much

larger scale with a nonuniform specific application. Our project is on a much smaller scale and the
data we are working with is a defined format for us to easily work with. Because of this, our
analytics system does not need to be as robust as the one they call for in this article. One thing we
can take away from this article is the strength of numbers. Statistically the more sensors and
devices you have connected to the network the better your data and information perceived will be.
This being said, if we wanted to expand our network of nodes to the level in this article, we could
use the big data analytics to achieve our goal.

PAGE 34

The second research paper, IEEE Research paper “Sensor Data Management System in
Sensor Network for Low Power” by lead researcher YongBag Moon, reviews sensor data
management in sensor networks focused on low power. This closely relates to our project as we are
also creating sensor networks that rely on low power to operate.

Moon’s team notes how they extend the life of their sensor nodes by only sending data
when necessary (that is when there is a change in data by a certain amount). A difference between
our network and their network is that their sensor nodes can communicate to their sink node,
while our home node will communicate with a few sensor nodes and the rest of the sensor nodes
will propagate the information. What is incredibly similar is how the sink or home node collects all
the sensor network data and then sends it up into the cloud. Something we can consider utilizing is
only sending back data if the data changes by a certain threshold. If we operated in this way, we
would not need to send data as often and would end up saving energy. Although considering our
network setup and sensor nodes inter communication, this may not be the most efficient manner.

The overall idea of this research paper is to utilize a threshold of change and to only

transfer data when the threshold of change is above a certain value. While this is a clever way of
saving energy, our setup does not need to pole as often as this research paper does. We only need
data ~3 times a day while this system would be ‘on’ hundreds of times more than ours. Seeing this,
we would most likely not utilize the same energy saving methods as this team, we will focus on
saving power by utilizing sleep modes.

The next article we researched, was a project created by Rachel Cardell-Oliver and Mark
Kranz called “A Reactive Soil Moisture Sensor Network: Design and Field Evaluation”. As stated in
the title, their project was a reactive soil moisture sensor network, keyword being reactive. Their
product was able to detect when a rainfall was occurring, and adjust the frequency at which
readings were being taken, to better analyze the moisture data. To achieve this, they used a
protocol called SMAC which is a MAC protocol designed to address the problem of energy
efficiency. Obviously, with a project like this, where you would have potentially hundreds of nodes,
you wouldn’t want to go out to your field all the time to swap out the batteries. Basically, their
nodes turned on briefly every 12 seconds to communicate with their neighbors. When rainfall is
detected, that 12 seconds is shortened to capture more readings.

When it comes to communication protocol, ours will get the job done, but it does not have

the ability to react to changes in the weather, like Cardell-Oliver and Kranz’ system can. In that
respect, we are far outmatched. However, a large part of our project goal was to create a cost
effective solution to capture soil moisture data. Kranz and Oliver had no such goal in mind when
they designed their system. Their final product cost nearly $5000 for the whole setup, and that
comes with only two nodes. Our design will cost less than $20 for each node, which means we can
offer a much larger node network, and the nodes become far more expendable.

When it comes to viewing the data, The Reactive Soil Moisture Sensor Network had a

similar solution to ours, in that their nodes send the data to an online server where it is stored in a

PAGE 35

database. However, in order to view the data, you must subscribe to their SOAP web service, and
develop your own user interface to pull and view the data. With our project, that is included. You
are able to create an account, claim homenodes, and view the data that they are sending, all
without much work. In the end, their project seems to be a much more robust solution to the node
network problem than ours, but the problem is that systems like theirs already exist, and are just as
expensive. Our project drastically reduces the cost involved in the node network, while also
providing a user interface for the data.

For our third research topic, I chose research on web applications that already exist instead
of an academic paper. As a web developer for our team, it makes sense to investigate other
competing products to glean what features we should have, and how to present them. I chose to
research two sites that exist. These sites are Aquaspy’s “AgSpy” and John Deere’s “Field Connect”
service. I chose these services because they have fully functioning demo sites that are representative
of the products, and let us compare what our plans were to real world applications.

First up, AgSpy has a feature that we had planned on from the beginning, so that was nice
to see. You are greeted by a Google Map overlay of all the fields that AgSpy’s service manages. This
is a feature we had planned on including. By clicking on a map pin, or selecting your field from a
list, you are brought to a page that shows details about the field. From here’ I was really not a huge
fan of AgSpy’s design. You are greeted with a graph that is not labled easily, with some vague lines
that aren’t intuitive. This may sound like something that that a field expert might understand, but
after showing it to our advisor he agreed that it was difficult to understand. It also has some
graphics that look like they were 1990s clip art. The design did not look modern, and was difficult
to understand. I feel like we already have a cleaner design, that was much closer to the next
application I reviewed.

John Deere’s Field Connect is a very clean application that presents data clearly. While it
didn’t have the google map, it does a good job of displaying all the user’s fields in a clean interface,
with an immediately visible moisture level. This is exactly what a user want’s to see, immediate and
understandable information about their field. The moisture level is represented as a colored bar
that is full and green if a sensor is reading proper hydration, and red and depleted if a sensor’s area
requires irrigation. This is something we hope to emulate by providing clear information to the
user that is available to them by the first page, or only one click away. By clicking on these sensors,
detailed information such as the owner and the option to move the sensor are provided. It is a
simple and clean interface that does not require knowledge of the field and is instantly
understandable.

In conclusion, looking into products that exist on the market is extremely useful, and
arguably more useful than an academic paper in the context of creating our web application. We
were able to affirm that some of our ideas were good, and some of them could be cleaner. Field
Connect was a little difficult to find, but is an excellent example of how information about field
moisture should be displayed.

PAGE 36

 Finally, we are not trying to reinvent the wheel. We are just trying to make the wheel
better. Other similar options are available. However, these options are expensive. Some of the
option are not user friendly and require technical skills and a lot of money to keep the service or
maintain the parts. Our project is aimed at reducing the cost of agricultural production and at the
same time improving the quality of crops produced by identifying when there is an urgent need for
crop irrigation and making this information readily available for the user so that appropriate action
can be taken.

PAGE 37

